INTRODUCING

- A AローK F ${ }^{\text {® }}$

Kills Bacteria and Viruses

MEDICAL DEVICE

EN 14683

SANS 1866/1

infoclocm натн

"Your partner in Healthcare Marketing"
PRESENTED BY: NANETTE DA FONSECA

DIRECTOR OF INFODOC HEALTH CC
2112 Eagle Trace Estate
1 Stork Road, Fourways, 2055
Vat no. 4010258764
Co. Reg. 2010/097191/23
Email: nanette@infodoc.co.za
Safe
Efficient
Sterilization
Deodorization
5-Layer Plus Filtering
PM2.5 Defense

NEW GENERATION OF BIO TECHNOLOGY RESPIRATORS

CERTIFICATE INDEX

1. New Influenza Respirator
2. Field Tested
3. What is AOP-KF Solid Alkali ?
4. Respirator Construction
5. Packaging
6. Certification
7. Nelson Labs - Viral Filtration Efficiency (VFE) Final Report
8. Nelson Labs - Synthetic Blood Penetration Resistance Final Report
9. Nelson Labs - Flammability of Clothing Textiles Final Report
10. Nelson Labs - EN14683 Type IIR Test Reports
11. Nelson Labs - Bacterial Filtration Efficiency (BFE) with Diff Pressure Final Report
12. Nelson Labs - Latex Particle Challenge Report
13. Nelson Labs - Microbial Cleanliness
14. SGS - Assessment of Antibacterial Finishes on Textiles
15. SGS - Harmful Substance Test Report
16. SGS - SVHC Test Report
17. SGS - Microbial Cleanliness
18. SGS - Bacterial Filtration Efficiency (BFE)
19. CNAS - Passes all tests of Chinese GB 2626 and meets the KN95 standard
20. CNAS - Bacterial Filtration Efficiency (BFE)
21. CNAS - Harmful Test Report, 100\% non-toxic
22. MFDS - Ministry of Food and Drug Safety Certificate
23. HCoV-229E Certificate
24. JAB Certificate
25. ISO 13485
26. CAS - Antibacterial Test
27. US FDA Registration
28. CE Certificate

Key Points

- New medical respirator with patented technology
- Kills bacteria
- Destroys viruses including COVID-19
- High breathability
- Filtrate over 98\% PM2.5 particles
- Can be used for up to 7 days
-3D design for comfort and tight fit

Safe
Efficient
Sterilization
Deodorization 5-Layer Plus Filtering

PM2.5 Defense
"Your partnet in Healthcare Marketing"

1

 New Influenza

 New Influenza

 Respirator

 Respirator}
-The AOP-KF95 Respirator is a new generation of respirators designed specifically for the use against Influenza types viruses including the COVID-19

- It uses Solid Alkali with patented technology to disinfect, sterilize, deodorize effectively and continuously
-The Solid Alkali is certified as non-toxic by the world's leading examination organization SGS and is 100% harmless to humans, animals and plants
- It is infused into the masks with the effect of slowly emitting a low level of Chlorine Dioxide to eliminate pathogenic micro-organisms such as bacteria, viruses and fungus resulting in the relief of common fever
- Chlorine Dioxide has been classified by the World Health Organization (WHO) as the most safe, green and effective sterilizer
- Due to the anti-bacteria/virus, it can be used effectively for up to 7 days
-The mask is constructed from 5 layers of non-woven fabric to provide an effective defence against PM2.5 particles while retaining high breathability
-The 3D design is highly comfortable to wear and with limited restrictions to talking

Safe
Efficient
Sterilization
Deodorization
5-Layer Plus Filtering
PM2.5 Defense

2 Field Tested

- The AOP-KF95 Respirator was used effectively during the outbreak of the COVID-19 virus in China
- Care takers from hospitals in China reported faster recovery of patients due to the unique nature of the slow emitting Dioxides which kills bacteria and destroys viruses beyond the mask
- Hundreds of thousands of masks were also donated to hospitals in China
- Great reviews from end users as compared to traditional N95 masks
- On going demands from hospitals due to it's unique virus killing properties

3

What is AOP-KF

 Solid Alkali ?Safe Efficient

Sterilization Deodorization 5-Layer Plus Filtering PM2.5 Defense

- New Bio-clean Material; Micro-nano Green Material; Advanced Catalytic Oxidation Material
- SGS tests showed "AOP-KF solid alkali does not produce harmful substance"
- Killing bacteria and virus effectively, but harmless to humans, animals and plants
- Slow generation of oxidation to effectively kill bacteria and destroys viruses over an extended period of time
- Superior performance compared to other technologies without harmful effects

Safe
Efficient
Sterilization
Deodorization
5-Layer Plus Filtering
PM2.5 Defense

4
 Respirator Construction

infocloc пййн

-The AOP-KF95 Respirator is made from 6 layers of non-woven fabric with a central infused Solid Alkali core layer to achieve high filtration and maximum protection:

Safe
Efficient
Sterilization
Deodorization
5-Layer Plus Filtering
PM2.5 Defense

5

Packaging

- Individual aluminum sleeves to retain the Solid Alkali for up to 2 years
- 50 sleeves per color box
- 8 boxes to a carton box
- 400 masks per carton box

Safe Efficient Sterilization
Deodorization
5-Layer Plus Filtering
PM2.5 Defense
KF-N95
For
Adults

6

Certification

- SGS - Antibacterial Finishes on Textile Material - kills over 99.9\%
- KF94 Korean standard equivalent to N95
- CE - end of March/early April 2020
- Nelson lab test reports PFE115, BFE110, FTS101, SBP210, MCM100, VFE110 - end of March/early April 2020
- EN 14683 planned
- Factory has ISO 9001
-HS Code 6307900000

"Yeur partnet in Heallicare Markeling"

Efficient
Sterilization
Deodorization 5-Layer Plus Filtering PM2.5 Defense

7

Nelson Labs - Viral Filtration Efficiency (VFE) Final Report

Viral Filtration Efficiency (VFE) Final Report

Test Article: AOP-KF
Study Number: 1279714-S01
Study Received Date. 21 Mar 2020
Testing Facility: Nelson Laboratories, LLC 6280 S. Redwood Rd.
Salt Lake City, UT 84123 U.S.A.
Test Procedure(s): Standard Test Protocol (STP) Number: STP0007 Rev 16
Deviation(s) None

Summary: The VFE test is performed to determine the filtration efficiency of testarticles by comparing the viral control counts upstream of the test article to the counts downstream. A suspension of bacteriophage $\Phi \times 174$ was aerosolized using a nebulizer and delivered to the test article at a constant flow rate and fixed air pressure. The challenge delivery was maintained af $1,1-3.3 \times 10^{3}$ plaque forming units (PFU) with a mean particle size (MPS) of $3.0 \mu \mathrm{~m} \pm 0.3 \mu \mathrm{~m}$, The aerosol droplets were drawn through a six-stage, viable particle, Andersen sampler for colleetion. The VFE test procedure was adapted from ASTM F2101.

All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210,211 and 820

```
                    Test Side: Inside
                    Test Area: }\quad-7.1\mp@subsup{\textrm{cm}}{}{2
VFE Flow Rate: 28.3 Liters perminute (L/min)
Conditioning Parameters: }85\pm5%\mathrm{ relative humidity (RH) and 21 土 5 % C for a minimum of 4 hours
Positive Control Average: }2.0\times1\mp@subsup{0}{}{2}\textrm{PFU
    Negative Monitor Count: <1 PFU
                    MPS: 28)m
```

Results:

Test Article Number	Percent VFE (\%)
1	97.3
2	98.6
3	98.0
4	97.5
5	98.0

The filtation efficiency percentages were calculated using the following equation:

$$
\% V F E=\frac{C-T}{C} \times 100 \quad \begin{aligned}
\mathrm{C} & =\text { Positive control average } \\
\mathrm{T} & =\text { Plate count total recovered downstream of the test article } \\
& \text { Note: The plate count total is available upon request }
\end{aligned}
$$

8

 Nelson Labs Synthetic

 Nelson Labs Synthetic Blood Penetration

 Resistance Final Report

 Resistance Final Report}

Safe
Efficient
Sterilization
Deodorization
5-Layer Plus Filtering
PM2.5 Defense

Synthetic Blood Penetration Resistance Final Report

Test Article: AOP-KF
Study Number 1279690-S01.1 Amended
Study Received Date
Study Completion Date
Testing Facility: Nelson Laboratonies, LLC
6280 S. Redwood Rd
Salt Lake City, UT 84123 U.S.A
Test Procedure(s). Standard Test Protocol (STP) Number: STP0012 Rev 09
Deviation(s) None

Summary: This procedure was performed to evaluate surgical facemasks and other fypes of protective clothing materials designed to protect against fluid penetration. The purgose of this procedure is to simulate an arterial spray and evaluate the effectiveness of the test article in protecting the user from possible exposure to blood and other body fluids. The distance from veflarget area surface to the tip of the cannula is 30.5 cm . A test volume of 2 mL of synthetic blood wgsemployed using the targeting plate method.

This test method was designed to comply with ASTMR R862 and 15022609 (as referenced in EN $14683: 2019$ and AS4381:2015) with the following Bxception: ISO 22609 requires testing to be performed in an environment with a temperature of $21^{\circ}+5^{\circ} \mathrm{C}$ and a relative humidity of $85 \pm 10 \%$. Instead, testing was performed at ambient conditons withimone minute of removal from the environmental chamber held at those parameters.

All test method acceptance cnteria were men Nesting was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Number of Test Articles Tested: 32
Number of Test Articles Passed 2-30
Test Side Outside
Pre-Conditioging: Minimum of 4 hours at $21 \pm 5^{\circ} \mathrm{C}$ and $85 \pm 5 \%$ relative humidity (RH) Test Condtions: $\quad 23.7^{\circ} \mathrm{C}$ and $21 \% \mathrm{RH}$

Resuits: Per ASTM F1862 and ISO 22609, an acceptable quality limit of 4.0% is met for a normai single sampling plan when ≥ 29 of 32 test articles show passing results.

Test Pressure $120 \mathrm{mmHg}(16.0 \mathrm{kPa})$

Test Article Number	Synthetic Blood Penetration
$1-6.9-32$	None Seen
$7-8$	Yes

Amendment Justification: At the request of the sponsor, the Sponsor Contact information was updated

9

Nelson Labs -

Flammability of Clothing

Textiles Final Report

Flammability of Clothing Textiles Final Report

Test Article: AOP-KF
Study Number: 1279716-S01.1 Amended
Study Received Date: 21 Mar 2020 Study Completion Date:
Testing Facility: Nelson Laboratories, LLC
6280 S. Redwood Rd.
Salt Lake City, UT 84123 U.S.A.
Test Procedure(s): Standard Test Protocol (STP) Number: STP0073 Rev 06
Deviation(s): None

Summary: This procedure was performed to evaluate the flammability of plainsurface clothing textiles by measuring the ease of ignition and the speed of flame spread. Theparameter of time is used to separate materials into different classes, thereby assisting in a judgmentof fabric suitability for clothing and protective clothing material. The test procedure was performed in accordance with the test method outlined in 16 CFR Part 1610 (a) Slep 1 - testing in the original state) Step 2 - Refurbishing and festing after refurbishing, was not performed. All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Test Article Side Tested. Outside Surface Orientation: Cross

Test Criteria for Specimen Classification (See 16 CFR Part 1610.7)

Class
1
2
3

The 16 CFR Part 1610 standard specifies that 10 replicates are to be tested if, during preliminary testing, only 1 test article exhibits thame spread and it is less than 3.5 seconds or the test articles exhibit an average flame spreactess than 3.5 seconds. Five replicates are to be tested if no flame spread is observed upon prefiminary testing, if only 1 test article exhibits flame spread and it is equal to or greater than 3.5 seconds, or if the average flame spread is equal to or greater than 3.5 seconds. In accordance with the standard, 5 replicates were tested for this study.

Results:

Replicate Number	Time of Flame Spread
1	IBE
2	DNI
3	DNI
4	DNI
5	$I B E$

DNI = Test Article did not ignite
IBE = Test Article ignited, but extinguished

Amendment Justification: At the request of the sponsor, the sponsor informationwas changed to reflect the manufacturer and authorized distributer addresses.

10

Nelson Labs EN14683 Type IIR Test Reports

Safe Efficient Sterilization Deodorization 5-Layer Plus Filtering PM2.5 Defense

Bacterial Filtration Efficiency (BFE) and Differential Pressure (Delta P) Final Report

> Test Article
> Study Number:
> Study Received Date

Testing Facility: Nelson Laboratories, LLC

Deviation(5):

6280 S. Redwood Rd.
Sall Lake City, UT 84123 U.S.A.
Test Procedure(s): Standard Test Protocol (STP) Number: STP0004 Rev 18
AOP-KF
1279715-S01
25 Mar 2020

None

Summary: The BFE test is performed to determine the filtration efficiency ortest articles by comparing the bacterial control counts upstream of the test article to the bacterial counts downstream. A suspension of Staphylacoccus aureus was aerosolized using a nebulizer and delivered to the test article at a constant flow rate and fixed air pressure. The challenge dellivery was maintaingd at $1.7-3.0 \times 10^{3}$ colony forming units (CFU) with a mean particle size (MPS) of $3.0 \pm 0.3 \mu \mathrm{~m}$. The terosols were drawn through a sixstage, viable particle, Andersen sampler for collection. This teigt method complies with ASTM F2101-19 and EN 14583.2019, Annex B.

The Detta P test is performed to determine the breathability of test articles by measuring the differential air pressure on either side of the test article using a manometer, at a constant flow rate. The Deita P test complies with EN 14683:2019, Annex G and ASTM F 2100 -19.
All test method acceptance criteria were met Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820 ,

Test Side: Inside

Test Side BFE Test Area: BFE Flow Rate	Inside $-71 \mathrm{~cm}^{2}$ 28.3 Liters per minute (L/min)
Detta P Flow Rater	$8 \mathrm{~L} / \mathrm{min}$
Conditioning Parameters:	$85 \pm 5 \%$ relative humidity (RH) and $21 \pm 5^{\circ} \mathrm{C}$ for a minimum of 4 hours
Test Article Dimersions:	$-216 \mathrm{~mm} \times-156 \mathrm{~mm}$
Positive Cont or Average:	$2.6 \times 10^{3} \mathrm{CFU}$
Negative Monitor Count:	$\leqslant 1 \mathrm{CFU}$
$\angle{ }^{\circ}$ MPS	$3.0 \mu \mathrm{~m}$

[^0]
Results:

Test Article Number		Percent BFE (\%)
1		98.6
2		99.1
3		98.0
4		98.8
5		98,4
Test Article Number	Delta P $\left(\mathrm{mm} \mathrm{H}_{2} \mathrm{O} / \mathrm{cm}^{2}\right)$	Della P (Pa/cm ${ }^{\text {a }}$
1	4.4	42.9
2	3.9	3. 38.6
3	3.9	38.2
4	3.8	37.5
5	3.9	38.7

The filtration efficiency percentages were calculated using the following equation:

$$
\% U F E=\frac{C-T}{C} \times 100
$$

$\mathrm{C}=$ Positive control avelaçe
$T=$ Plate count tofacrecovered downstream of the test articie Note The plate count total is available upon request

11

Nelson Labs - Bacterial

 Filtration Efficiency
(BFE) with Diff Pressure

Final Report

Nelson Labs.
A Sotera Health company

Bacterial Filtration Efficiency (BFE) and Differential Pressure (Delta P) Final Report

Test Article: Study Number: Study Received Date Testing Facility:
AOP-KF
1279715-S01
25 Mar 2020
Nelson Laboratories, LLC
6280 S. Redwood Rd
Salt Lake City. UT 84123 U. S. A.
Test Procedure(s): Standard Test Protocol (STP) Number. STP0004 Rev 18
Deviation(s): None

Summary: The BFE test is performed to determine the filtration afficiency offest articies by comparing the bacterial control counts upstream of the test article to the bacterial count j downstream. A suspension of Staphylococcus aureus was aerosolized using a nebulizer and deliveredto the test article at a constant flow rate and fixed air pressure. The challenge delivery was maintained at $1.7-3.0 \times 10^{3}$ colony forming units (CFU) with a mean particle size (MPS) of $3.0 \pm 0.3 \mu \mathrm{~m}$. The aerosols were drawn through a sixstage, viable particle, Andersen sampler for collection. This test method complies with ASTM F2101-19 and EN 14683:2019, Annex B.
The Delta P test is performed to determine the breathapity of test articles by measuring the differential air pressure on either side of the test article using a nabometer, at a constant flow rate. The Delta P test comples with EN 14683:2019, Annex C and ASTM F2100-19.
All test method acceptance criteria were met Festing was performed in compliance with US FDA good manufacturing practice (GMP) regulations:2T CFR Parts 210, 211 and 820.

Test Side	Inside
BFE Test Area	$75 \mathrm{~cm}^{2}$
BFE Flow Rate	28.3 Liters per minute (L/min)
Delta P Flow Rate	$8 \mathrm{~L} / \mathrm{min}$
Conditioning Parameters	$85 \pm 5 \%$ relative humidity (RH) and $21 \pm 5^{\circ} \mathrm{C}$ for a minimum of 4 hours
Test Article Dimensions:	$-216 \mathrm{~mm} \times-156 \mathrm{~mm}$
Positive Contorfiverage:	$2.6 \times 10^{\circ} \mathrm{CFU}$
Negative Monitor Count	$<1 \mathrm{CFU}$
MPS	$3.0 \mu \mathrm{~m}$

Study Number 1279715-S01
Bacterial Filtration Efficiency (BFE)

Test Article Number		Percent BFE (\%)
1		98.6
2		99.1
3		98.0
4		98.8
5		98.4
Test Article Number	Delta P ($\mathrm{mm} \mathrm{H}_{2} \mathrm{O} / \mathrm{cm}^{2}$)	Delta P (Paicm ${ }^{\text {² }}$)
1	4.4	42.9
2	3.9	Q 38.6
3	3.9	38.2
4	3.8	37.5
5	3.9	38.7

The filtration efficiency percentages were calculated using the following equation:

$$
\% B F E=\frac{C-T}{C} \times 100
$$

$\mathrm{C}=$ Positive control average

$T=$ Plate count total (Tecovered downstream of the test article Note The plate count total is available upon request

12 Nelson Labs - Latex Particle Challenge Report

Safe
Efficient
Sterilization
Deodorization 5-Layer Plus Filtering

PM2.5 Defense

Latex Particle Challenge Final Report

Test Article: AOP-KF
Study Number: 1279708-S01
Study Received Date: 21 Mar 2020
Testing Facility: Nelson Laboratories, LLC
6280 S. Redwood Rd.
Salt Lake City, UT 84123 U.S.A.
Test Procedure(s): Standard Test Protocol (STP) Number: STP0005 Rev 07
Deviation(s); Quality Event (QE) Number(s): QE22125

Summary: This procedure was performed to evaluate the non-viable particle filtration efficiency (PFE) of the test article. Monodispersed polystyrene latex spheres (PSL) were nebulized (atomized), dried, and passed through the test article. The particles that passed through the test article were enumerated using a laser particle counter.

A one-minute count was performed, with the test article in the system. A one-minute control count was performed, without a test article in the system, before and after each test article and the counts were averaged. Control counts were performed to determine the average number of particles delivered to the test article. The filtration efficiency was calculated using the number of particles penetrating the test article compared to the average of the control values.

The procedure employed the basic particle filtration method described in ASTM F2299, with some exceptions; notably the procedure incorporated a non-neutralized challenge. In real use, particles carry a charge, thus this challenge represents a more natural state. The non-neutralized aerosol is also specified in the FDA guidance document on surgical face masks. All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Test Side: Side Labeled Back
Area Tested: $91.5 \mathrm{~cm}^{2}$
Particle Size: $0.1 \mu \mathrm{~m}$
Laboratory Conditions: $\quad 21^{\circ} \mathrm{C}, 23 \%$ relative humidity (RH) at $1543 ; 21^{\circ} \mathrm{C}, 23 \% \mathrm{RH}$ at 1646
Average Filtration Efficiency: 99.791%
Standard Deviation: 0.2543

A Sotera Health company

Deviation Details: Controls and sample counts were conducted for one minute instead of an average of three one minute counts. This change shortens the total test time for each sample but will still provide an accurate determination of the particle counts. An equilibrate is a dwell period where the challenge is being applied to the test article for a certain period of time before test article counts are counted. The equilibrate period was reduced from 2 minutes to a minimum of 30 seconds which is sufficient time to clear the system of any residual particles, and establish a state of stable equilibrium before sample counts are taken. Test method acceptance criteria were met, results are valid.

Results:

Test Article Number	Test Article Counts	Average Control Counts	Filtration Efficiency (\%)
1	24	11,385	99.79
2	5	11,521	99.957
3	7	11,660	99.940
4	75	11,573	99.35
5	9	11,047	99.919

13
 Nelson Labs - Microbial Cleanliness

Authorized Distributor:
Manufacturer:
Max Excel Corporation Limited
Room 1104, Julibee Centre,
18 Fenwick Street Wanchai,
HONG KONG

Microbial Cleanliness (Bioburden) of Medical Masks Final Report

Test Article: AOP-KF
Study Number: 1279700-S01
Study Received Date: 21 Mar 2020
Testing Facility: Nelson Laboratories, LLC
6280 S. Redwood Rd.
Salt Lake City, UT 84123 U.S.A.
Test Procedure(s): Standard Test Protocol (STP) Number: \quad STP0036 Rev 15
Customer Specification Sheet (CSS) Number: 202001695 Rev 01
Deviation(s): None

Summary: The testing was conducted in accordance with EN 14683:2019, with the exception of approximate volumes of eluent used when performing the extraction procedure and a temperature range of $30-35^{\circ} \mathrm{C}$ used for aerobic incubation.

When bioburden results are calculated using a software program, manual calculations may differ slightly due to rounding. The counts determined on products are colony forming units and may not always reflect individual microorganisms. The sponsor performs any statistical analysis and determines the acceptable limits. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Results:

Unit Number	Weight (g)	Aerobic	Fungal	Total Bioburden $($ CFU/mask $)$	Total Bioburden $(\mathrm{CFU/g})$
1	6.6	<3	<3	5.8	0.9
2	7.0	<3	<3	5.9	0.8
3	6.5	<3	<3	5.9	0.9
4	6.8	<3	<3	5.9	0.9
5	6.4	3^{a}	<3	6.1	1.0
Recovery Efficiency			$24.8 \%^{\mathrm{b}}$		

< = No Organisms Detected
Note: The results are reported as colony forming units per test article.
${ }^{\text {a }}$ Spreader. Count is considered a minimum estimate due to swarming of certain colonies on the membrane.
${ }^{\mathrm{b}}$ The recovery efficiency may be impacted due to spreaders on the membrane.

Gabrielle Waldron electronically approved for Study Director

Robert Putnam
13 Apr 2020 18:27 (+00:00)
Study Completion Date and Time

Method Suitability:

Organism	Percentage
Bacillus atrophaeus	98%

Test Method Acceptance Criteria: If applicable, anaerobic controls are acceptable for the bioburden test results. The number of masks to be tested shall be a minimum of 5 or more to meet an acceptable quality level of 4%. The bioburden of the medical mask shall be $<30 \mathrm{CFU} / \mathrm{g}$ tested.

Procedure:

Positive Controls/Monitors: Bacillus atrophaeus
Extract Fluid: Peptone Tween ${ }^{\circledR}$
Extract Fluid Volume: $\sim 300 \mathrm{~mL}$
Extract Method: Orbital Shaking for 15 minutes at 250 rpm
Plating Method: Membrane Filtration
Agar Medium: Potato Dextrose Agar
Tryptic Soy Agar
Recovery Efficiency: Exhaustive Rinse Method
Aerobic Bacteria: Plates were incubated 3 days at $30-35^{\circ} \mathrm{C}$, then enumerated.
Fungal: Plates were incubated 7 days at $20-25^{\circ} \mathrm{C}$, then enumerated.

14

SGS - Assessment of Antibacterial Finishes

on Textiles

Safe
Efficient
Sterilization
Deodorization
5-Layer Plus Filtering
PM2.5 Defense

Job No. : HKHC200100000272
The following sample was submitted and identified by the client as AOP-KF © Fever Relief Mask Core Filter

Product Description
Quantity Received
Sample Appearance SGS Sample No.
Sample Recelving Condition
Country of Origin
Sample Receiving Date
Testing Period
: AOP-KF © Fever Relief Mask Core Filter
: 1 bag
: White solid
: HKHC200100000272-101
In unopened plastic bag under ambient condition
: China
: Jan 20, 2020
: Jan 20, 2020 - Jan 31, 2020

Test Requested, Test Method and Test Results

Please refer to the following page(s).

Signed for and on behalf of SGS Hong Kong Lid.

WONG KIN MAN, GILMAN
 ASSISTANT TECHNICAL DEVELOPMENT MANAGER

- COSMETICS, PERSONAL CARE \& HOUSEHOLD SERVICES

[^1]
Test Requested, Test Method and Test Results

The analyses were performed with reference to:
Assessment of Antibacterial Finishes on Textile Material (AATCC 100-2012)
Test bacteria: Staphylococcus aurous (ATCC 6538)

Tested Specimen	Bacterial count (colony forming unit, CFU per ml) over contact period		Result: \% of reduction of bacteria	Specified requirement	Comment
	0 hour	24 hours			
As received	1.60×10^{5}	<100	>99.94	Minimum 99%	Pass
Untreated control sample	1.28×10^{5}	2.59×10^{7}	1	P	1

Test bacteria: Klebsiella pneumoniae (ATCC 4352)

Tested Specimen	Bacterial count (colony forming unit, CFU per ml) over contact period		Result \% of reduction of - bacteria	$\begin{aligned} & \text { Specified } \\ & \text { requirement } \end{aligned}$	Comment
	Ohour	24 hours			
As received	1.20×10^{6}	,	>99.92	$\begin{gathered} \text { Minimum } \\ 99 \% \end{gathered}$	Pass
Untreated control sample	1.04×10^{5}	3.15×10^{81}	1	,	1

Note:

1. Results reported on the submitted sample on an as recelved basis.
2. The untreated control sample is a 100% cotton fabric without fluorescent brighteners or other finish,

Remarks:

1 The number of circular swatches ($\mathbf{4 . 8 + 1 \cdot 0 . 1 \mathrm { cm } \text { in diameter) used per jar: } 6 , ~ (2)}$
2 Sterilization of samples: By autoclave.
3 Culture medium used for bacterial culture preparation: Nutrient broth
4 Diluent used for inoculum dilution: 1:20 Nutrient broth
5 Surfactant used in inoculums: None
$6 \quad$ Neutralizing solution: 0.85% Saline $+0.1 \%$ Tween 80

[^2]
PHOTO APPENDIX

[^3]

15

SGS - Harmful Substance Test Report

检测报告

Test Report

报告编号：
Report No．：

样品采样日期：2017／8／14 Sample date：

提交报告日期：2017／8／25
Submit report date：
样品：
室内空气（1）
Sample：

项目编号：

备注：

3．通标广州分公司坏境部办公室。

Remarks：

1．Without the written permission of the company，do not copy（except full text copy） test report．
2．Unless otherwise stated，this report is only responsible for sampling and test samples．
3．General atandard Guangzhou Branch offica of Environment Department．

制制

事核：

数炏釦

VOC 㭘索报告
 VOC Analysis Report

样品用 TO－15 的方法测试，用 GCIMS 仪分析，用 NIST 谱库定性检索主䨌化合物，除备注化合物以标线定量外，其他以年苯标线进行半定量，效排仅供學考。

7：

Sample used TO－15 methods for testing．Analysis with GC／MS，use NIST qualitative search of main Compounds using mist spectral library．Except for remarks，compounds are quantified by the marked line， other semi－quantitative based on toluene marking，the data is for reference only．

66.485	0.68 乙起	$0.010 \mathrm{mg} / \mathrm{m}^{2}$
	Ethyl ether	838 000060－29－7 76
	Ethane，1，2－diethoxy－	8732 000629－14．1 59
	Ethane，1，2－diethoxy－	8731 000629－14．159
76.592	0.55 1，3－成三栲	$0.008 \mathrm{mg} / \mathrm{m}^{3}$
	1，3－Pentadiene	437 000504－60－9 95
	Cyclopropane，ethylidene－	464 018631－83－9 94
	1，3－Butadiene，2－methyl－	459 000078－79－593
87.004	0.79 乙豯甲間	$0.012 \mathrm{mg} / \mathrm{m}^{3}$
	Acetic acid，methyl ester	818 000079－20－9 50
	2－Propanone，1－hydroxy－	812000116－09－6 9
	Acetic acid，methyl ester	818 000079－20－9 9
97.1981	1.62 二战甲祽	$0.019 \mathrm{mg} / \mathrm{m}^{3}$（标找定量）
	Methylene Chloride	1517 000075－09－2 95
	Methylene Chloride	$1516000075-09-295$
	Methylene Chloride	1519 000075－09－2 91
107.884	2.78 2－甲茥戊杬	$0.041 \mathrm{mg} / \mathrm{m}^{2}$
	Pentane，2－methyl－	$1816000107-83-590$
	Pentane，2－methyl－	1814 000107－83－5 86
	trans－2，3－Epoxydecane	27746 054125－39－2 59
118.271	1.00 3－甲基成栋	$0.015 \mathrm{mg} / \mathrm{m}^{3}$
	Pentane，3－methyl－	1817 000096－14．0 87
	Pentane，3－methyl－	$1815000096-14.087$
	Pentane，3－methyl－	1818 000096－14．080
129.607	0.61 甲荎环成纷	$0.009 \mathrm{mg} / \mathrm{m}^{3}$
	Cyclopentane，methyl－	1487 000096－37．758
	Piperazine，2－methyl－1，4－dinitroso	29242055556.94 .042
	1－Pentene，2－methyl－	1481000763－29－1 38
1310.631	0．58 抔己梅	$0.009 \mathrm{mg} / \mathrm{m}^{3}$
	Cyclohexane	$1449000110-82.783$
	Cyclohexane	$1451000110-82-781$
	Cyclohexane	$1450000110-82-781$

$1413.421 \quad 1.23$ 甲華
Toluene
Toluene
Toluene

Hydrazinecarboxylic acid，ethyl es
ter
Hydrazinecarboxylic acid，ethyl es
ter
Propanamide，2－hydroxy－

1521.8650 .60 餅营平限乙的

er
$0.014 \mathrm{mg} / \mathrm{m}^{3}$（3）线定量）
2436 000108－88－3 95
2432 000108－88－3 94
2433 000108－88－3 93
$0.009 \mathrm{mg} / \mathrm{m}^{3}$
$4614004114 \cdot 31-264$
$4611004114-31-245$
$2163002043-43-839$

备注：

研发等目的，仅供内部悉考。

Remarks：

The detection method is not within the scope of CMA qualification．This test report is only for the customer department， teaching，internal quality control，product development and other purposes．Internal reference only．

VOC Analysis Report
VOC 检察报告

原号	名䅂	浓廈 mg / m
1	异丁婦	0.048
2	TS	0.142
3	2－甲基丁榰	0.073
4	两閒	0.116
5	成笃	0.049
6	乙喰	0.010
7	1，3－女二烺	0.008
8	乙而甲閣	0.012
9	二氯甲熎	0.019
10	2－甲碓皮施	0.041
11	3－甲基奴榶	0.015
12	甲巷本发烺	0.009
13	环己你	0.009
14	年莱	0.014
15		0.009

 The test did not find that Kang Feng fiu Fang AOP－KF solid akali materials (002) produced harmful Substences．

The test did not find that Kang Feng Jiu Fang AOP－KF solid alkali materials（ ClO 2 ）produced harmful

 Substances．
16

 SGS - SVHC Test Report

 SGS - SVHC Test Report}

Test Report
No．SZXEC2000834201
Page 1 of 19 （SVHC）

SHENZHEN KANGFENG ENVIRONMENT SCIENCE \＆TECHNOLOGY DEVELOPMENT CO．，LTD ROOM 2101，FLOOR 21，BLOCK D，BUILDING 3，TIAN AN YUN GU INDUSTRIAL PARK（PHASE 1），BANTIAN SUB－DIST，SHENZHEN

The following samples）was／were submitted and identified on behalf of the clients as ：Kangfeng AOP－KF ${ }^{\oplus}$ solid alkali

SGS Job No．：
Date of Sample Received ：
Testing Period：
Test Requested：

RP20－007924－SZ
30 Apr 2020
30 Apr 2020－09 May 2020
As requested by client，SVHC screening is performed according to：
（i）Two hundred and five（205）substances in the Candidate List of Substances of Very High Concern（SVHC）for authorization published by European Chemicals Agency（ECHA）on and before Jan 16， 2020 regarding Regulation（EC）No 1907／2006 concerning the REACH．
（ii）Five（5）substances in the Public Consultation List of potential Substances of Very High Concern（SVHC）published by European Chemicals Agency（ECHA） on Mar 3， 2020 regarding Regulation（EC）No 1907／2006 concerning the REACH．

Test Results ： Please refer to next pages）．

Summary：
According to the specified scope and evaluation screening，the test results of SVHC are

Signed for and on behalf of
SGS－CSTC Standards Technical Services Co．，Ltd．Shenzhen Branch

Ford Ski
Approved Signatory

Unless otherwise agreed in writing，this document is issued by the Company subject to its General Conditions of Service printed overleaf，available on request or accessible at http：／／www．sqs．com／en／Torms－and－Conditions．aspx and，for electronic format documents Attention is drawn to the limitation of liability，indemnification and jurisdiction issues defined therein．Any holder of this document is advised that information contained hereon reflects the Company＇s findings at the time of its intervention only and within the limits of Client＇s instructions，if any．The Company＇s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents．This document cannot be reproduced except in full，without prior written approval of the Company．Any unauthorized alteration，forgery or falsification of the content or results shown in this lest reportreler only to the sample（s）tested中国．深扠．龙岗区报田吉华路 430 号江道工

No．SZXEC2000834202
日期：2020年05月09日
第1页，共18页

（SVHC）

深圳市康风环境科技发展有限公司
深圳市龙岗区坂田街道天安云谷产业园一期 3 栋 D 座 21 楼 2101 房

以下测试之样品是由申请者所提供及确认：康风 $A O P-\mathrm{KF}^{\oplus}$ 固体碱

SGS工作编号：
样品接收日期：
测试周期：
测试要求 ：

测试结果：
RP20－007924－SZ
2020年04月30日
2020年04月30日－2020年05月09日
根据客户要求，
（i）基于欧洲化学品管理署截止2020年1月16日公布的供授权审议的高关注物质候选清单（根据欧盟第1907／2006号REACH 法规），对205种高关注物质（SVHC）进行筛分测试。
（ii）基于欧洲化学品管理署于 2020 年 3 月 3 日公布的潜在的高关注物质咨询清单（根据欧盟第1907／2006号REACH法规），对5种高关注物质（SVHC）进行篮分测试。

总结：

请参见下一页

17
 SGS - Microbial Cleanliness

Safe Efficient
Sterilization Deodorization 5-Layer Plus Filtering
PM2.5 Defense

Test Report
No.: T32020270278SN
Date: JUL 09, 2020
Page 1 of 4

INFINITY INTERNATIONAL STRATEGIC INVESTMENT GROUP LIMITED ROOM 1104, 11/F, JUBILEE CENTRE, 18 FENWICK STREET, WAN CHAI, HONG KONG

The following samples were submitted and identified on behalf of the client as:
PROTECTIVE FACE MASK

SGS Case No.
Lot No. / Batch Code
Sample Description
Quantity Submitted
Style / Item No.
Quantity Submitted
Manufacturer
Country of Origin
Sample Receiving Date
Test Performing Date
Test Requested : Please refer to the result summary.

Test Method \& Results : Please refer to next page(s).

Result Summary

Test Requested	Conclusion
Microbial cleanliness (Bioburden) (EN	See Result
$14683: 2019+$ AC:2019 Annex D)	

Signed for and on behalf of SGS Hong Kong Ltd.

Au Kam Chi, Gigi
Technical Manager

Microbial cleanliness (Bioburden) (EN 14683:2019+AC:2019 Annex D)

Test Methods

Bioburden
The analyses were performed according to EN 14683:2019+AC:2019 Annex D and ISO 11737-1:2018

Test Results

| | AOP-KF Mask (Brand New) | |
| :---: | :---: | :---: | :---: |
| SGS Sample No.:HKHC200600002184-101 | | |\(\left.\quad \begin{array}{c}Total Bioburden,

cfu/mask\end{array} \quad $$
\begin{array}{c}\text { Total Bioburden, } \\
\text { cfu } / \mathrm{g}\end{array}
$$\right)\)

Recovery Efficiency	Correction Factor
62.7%	1.6

Microbial Cleanliness (Bioburden): $2.3 \mathrm{cfu} / \mathrm{g}$
Standard requirement ${ }^{t l}: \leq 30$ cfu/g
Note:

1. Results reported on the submitted sample on an as received basis.
2. <= less than
3. cfu = Colony Forming Units
4. Extraction method: by stomacher at 250 rpm for 5 minutes
5. \# EN 14683:2019+AC:2019 - Medical face masks - Requirements and test methods - Performance requirements for medical face masks - Microbial cleanliness

Microbial cleanliness (Bioburden) (EN 14683:2019+AC:2019 Annex D)

Test Methods

Bioburden
The analyses were performed according to EN 14683:2019+AC:2019 Annex D and ISO 11737-1:2018
Test Results

| | $\begin{array}{c}\text { AOP-KF Mask (Used for 7 Days) } \\ \text { SGS Sample No.:HKHC200600002184-102 }\end{array}$ | | $\begin{array}{c}\text { Total Bioburden, } \\ \text { cfu/mask }\end{array}$ |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Total Bioburden.

cfu/g\end{array}\right]\)| Article Number | 7.17 g | 72 |
| :---: | :---: | :---: |

Recovery Efficiency	Correction Factor
62.7%	1.6

Microbial Cleanliness (Bioburden): $9.1 \mathrm{cfu} / \mathrm{g}$
Standard requirement*: ≤ 30 cfu/g
Note:

1. Results reported on the submitted sample on an as received basis.
2. $<=$ less than
3. cfu = Colony Forming Units
4. Extraction method: by stomacher at 250 rpm for 5 minutes
5. \# EN 14683:2019+AC:2019 - Medical face masks - Requirements and test methods - Performance requirements for medical face masks - Microbial cleanliness

Test Report

Photo Appendix

Sample as received
*** End of Report ***

This document is issued by the Company subject to its General Conditions of Service printed overleat, available on request or accessible at hto//waw. sigs com/en/terms-and Condions aspex and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at hipp/www sas som/en/Terms.and-Condionsitermse Document assa. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reffects the Company's findings at the time of ita intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawtul and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

18
 SGS - Bacterial Filtration Efficiency (BFE)

Safe Efficient
Sterilization
Deodorization
5-Layer Plus Filtering
PM2.5 Defense
"Your partnet in Healthcare Morkeling"

Test Report
No.: T32020260466SN
Date: JUL 14, 2020
Page 1 of 3

INFINITY INTERNATIONAL STRATEGIC INVESTMENT GROUP LIMITED
ROOM 1104, 11/F, JUBILEE CENTRE, 18 FENWICK STREET, WAN CHAI, HONG KONG
The following samples were submitted and identified on behalf of the client as:

PROTECTIVE FACE MASK

SGS Case No.

Lot No. / Batch Code
Sample Description
Quantity Submitted Style / Item No.

Quantity Submitted Manufacturer Country of Origin Sample Receiving Date Test Performing Date

Test Requested
Test Method \& Results

CA320202626169
NOT PROVIDED
WHITE RESPIRATOR
40 PCS

1) AOP-KF MASK (BRAND NEW)
2) AOP-KF MASK (USED FOR 7 DAYS)

40 PCS. (2 STYLES)
ZHONGSHAN XINKE MEDICAL DEVICE LIMITED CHINA
JUN 18, 2020 AND JUL 09, 2020
JUN 18 TO JUL 14, 2020

Result Summary

Test Requested	Conclusion
Bacterial filtration efficiency (BFE)	See Result
(EN14683:2019+AC:2019 Appendix B)	

Signed for and on behalf of SGS Hong Kong Ltd.

Au Kam Chi, Gigi
Technical Manager

Bacterial filtration efficiency (BFE) (EN14683:2019+AC:2019 Appendix B)

Test Side
Pre-Conditioning
Test Condition
Dimensions of test specimen
BFE Test Area
BFE Flow Rate
Test bacteria
Positive Control Average
Negative Monitor Count

White Colour (Inside)
Minimum of 4 hours at $21 \pm 5^{\circ} \mathrm{C}$ and $85 \pm 5 \%$ R.H.
$21 \pm 2^{\circ} \mathrm{C}$ and $30-50 \%$ R.H.
$157 \mathrm{~mm} \times 204 \mathrm{~mm}$
$49 \mathrm{~cm}^{2}$
$28.3 \mathrm{l} / \mathrm{min}$
Staphylococcus aureus ATCC 6538
$2.9 \times 10^{3} \mathrm{CFU}$
$<1 \mathrm{CFU}$

AOP-KF Mask (Brand New)

Test Specimen	Percent BFE (\%)
1	99.9
2	99.9
3	99.9
4	99.9
5	99.9

AOP-KF Mask (Used for 7 Days)

Test Specimen	Percent BFE (\%)
1	99.9
2	99.9
3	99.9
4	99.9
5	99.9

19

CNAS - Passes all tests of Chinese GB 2626 and meets the KN95 standard

202019124876

检验检测报告

immo
testing
CNASL103n

样品图片
（电子敞）
No： 200103111
共 3 页 第 2 页

202014124876

检验检测报告附页

No： 200103111
共3页 第3页

广检集团
GTTC

敬缕
些m
CNAELIOSH

TEST REPORT

（Electronic version）

VERIFICATION WEBSITE：www．gttc．net．cn VERIFICATION CODE：BVDA－5163－53

ISSUE DATE：2020－05－15
APPLICANT：ZHONGSHAN XINKE MEDICAL DEVICE LIMITED
ADDRESS：NO．6，INDUSTRIAL ZONE，NANLANG TOWN，ZHONGSHAN，GUANGDONG，CHINA

INFORMATION CONFIRMED BY APPLICANT：
MASK
QUANTITY：FIFTY PIECES
SIZE：AOP－KF MASK
MANUFACTURE＇S NAME：ZHONGSHAN XINKE MEDICAL DEVICE LIMITED

DATE RECEIVED／DATE TEST STARTED：2020－04－25
CONCLUSION：
VISUAL FIELD M
FILTRATION EFFICIENCY TO NaCl PARTICULATE MATTER M
INSPIRATORY RESISTANCE M
EXPIRATORY RESISTANCE M
FLAMMABILITY M
HEAD BAND M
APPEARANCE INSPECTION［2 PIECES］M
NOTE：＂M＂－MEET THE STANDARD＇S REQUIREMENT＂F＂－FAIL TO IEET THE STANDARD＇S REQUIREMENT ＂．．．＂－NO COMMENT

REMARK：

THE AUTHORIZATION OF APPEARANCE INSPECTION IS NOT RECEIVED FROM CNAS．
THIS REPORT IS THE ENGLISH TRANSLATION VERSION OF THE REPORT 200103111.
ALL THE TESTED ITEMS ARE TESTED UNDER THE STANDARD CONDITION（EXCEPT FOR INDICATION）．
COPIES OF THE REPORT ARE VALID ONLY RE－STAMPED．
THE EXPERIMENT WAS CARRIED OUT AT No．1，ZHUJIANG ROAD，PANYU DISTRICT，GUANGZHOU，GUANGDONG，P．R．CHINA．

APPROVED BY：

TEST REPORT

TEST REPORT

No： 200103112

VISUAL FIELD（ ${ }^{\circ}$ ）
（GB 2890－2009 6．8）
70
REQUIREMENT
$\geqslant 60$
（GB 2626－2006）
FILTRATION EFFICIENCY TO NaCl PARTICULATE MATTER（\％）
（GB 2626－2006 6．3，AIR FLOW：85L／min，AEROSOL：NaCl，AEROSOL CONCENTRATION： $15 \mathrm{mg} / \mathrm{m}^{3}$ ， TEMP： $23.2^{\circ} \mathrm{C}$ RH：36．9\％）

FILTRATION EFFICIENCY：
UNTREATED SAMPLE
1\＃99．071
2\＃99．111
3\＃99．491
4\＃99．471
5\＃ 99.304
6\＃99．207
7\＃99．564
8\＃ 99.347
9\＃99．293
10\＃99． 033
CONDITIONING TREATED
1\＃ 98.97
2\＃99．351
3\＃ 99.037
4\＃99． 149
5\＃99． 133
INSPIRATORY RESISTANCE（ Pa ）
（GB 2626－2006 6．5，HEAD SIZE：MEDIUM）
UNTREATED SAMPLE：
1\＃ 188.9
2\＃ 187.1
PRETREATMENT SAMPLE：
1\＃ 184.3
2\＃ 173.8
EXPIRATORY RESISTANCE（ Pa ）
（GB 2626－2006 6．6，HEAD SIZE：MEDIUM）
UNTREATED SAMPLE：
1\＃ 169.9
2\＃ 166.2
PRETREATMENT SAMPLE：
1\＃ 166.2
2\＃ 155.4
\qquad

REQUIREMENT
$\leqslant 350$
（GB 2626－2006）
(GB 2626-2006)

REQUIREMENT
FILTRATION EFFICIENCY：
$\geqslant 95.0$
（KN95）
（GB 2626－2006）

REQUIREMENT
$\leqslant 250$
（GB 2626－2006）

202019124876

TEST REPORT

FLAMMABILITY（s）

（GB 2626－2006 6．15）
afterflame tine
UNTREATED SAMPLE
REQUIREMENT
AFTERFLAME TIME
\＃ 0.0
2\＃ 0.0
CONDITIONING TREATED
3\＃ 0.0
4\＃ 0.0
HEAD BAND
（GB 2626－2006 6．11）
UNTREATED SAMPLE：
REQUIREMENT
EACH HEAD BAND，BUCKLE AND OTHER ADJUST
1\＃PASS
CONDITIONING TREATED：
PARTS OF MASK SHOULD NOT SLIP OR BREAK
UNDER 10N TENSION FOR 10S．
1\＃PASS
（GB 2626－2006）
APPEARANCE INSPECTION［2 PIECES］
（GB 2626－2006 6．1）
PASS ACCORDING TO THE CLAUSE 5.2 OF THE PRODUCT STANDARD
（GB 2626－2006）

20

CNAS - Bacterial Filtration Efficiency (BFE)

Safe Efficient Sterilization Deodorization 5-Layer Plus Filtering PM2.5 Defense

中国认可国际互认
检测
TESTING
检测编号：KJ20192796
Test No．

GUANG ZHOU INSTITUTE OF MICROBIOLOGY
检 测 报 告
TEST REPORT
收样日期：2019年12月24日
Date Received

＊＊＊接下页／To be continued $* * *$

检 测 报 告
 TEST REPORT

收样日期：2019年12月24日
Date Received

细菌过滤效率试验：

1．试验器材
1）菌种：金黄色葡萄球菌 ATCC 6538
2）微生物气溶胶发生器：PLG 2000
3）培养基：胰蛋白酶大豆琼脂（TSA）
4）采样器：六级筛孔空气撞击式采样器
2．试验条件
1）环境温度： $23.5^{\circ} \mathrm{C}$
2）环境湿度： $57 \% \mathrm{RH}$
3．测试步骤
1）先不放样品，利用采样器和喷雾器调整细菌气溶胶浓度为（ 2200 ± 500 ）CFU，作为阳性质控值。
2）将试验样品夹在采样器上端，被测试面向上并采样。
3）待样品测试完成后，再测试一次阳性质控。然后收集 2 min 气溶胶室中的空气样品，作为阴性质控，在此过程中不能向喷雾器中输送细菌悬液。
4．计算公式
细菌过滤效率 $\mathrm{BFE}=\frac{c-T}{c} \times 100 \% ~(c$ 为阳性质控平均值，T 为试验样品计数之和）
检测结果：

样品编号	试验菌种	细菌过滤效率（BFE） $(\%)$
KJ20192796－1	金黄色葡萄球菌	99.12

结论：由深圳市康风环境科技发展有限公司送检的型号为防细菌口罩的康风 AOP－KF 固体碱抗流感防感染口罩，细菌过滤效率（BFE）检测结果为 99.12% 。
报告结束/End of report

一，本检测报告涂改增删无效，未加盖检测单位＂检验检测专用章＂无效，无相关责任人签名无效，复印件无效。

二，对送检样品，报告中的样品信息由委托方声称，本单位不对其真实性负责；本检测报告仅对送检样品负责。

三，对报告的异议应于报告签发之日起 15 个工作日内向本单位提出，逾期视为承认本报告。微生物检测不复检。

四，本检测报告及我单位名称不得用于产品标签，广告，评优及商品宣传等。

五，报告中标＂×＂项目为还未通过广东省资质认定和中国合格评定国家认可委员会认可的项目；标＂＂＂为只通过中国合格评定国家认可委员会认可的项目；标＂＂＂为只通过广东省资质认定的项目。

六，报告中未取得广东省资质认定的项目，检测数据和结果仅作为科研，教学或内部质量控制之用。

七，因报告中所用语言产生的歧义，以中文为准。

联系地址：广州市黄埔区科学城尖塔山路 1 号
检验地址：（与联系地址不同时填写此项）
邮政编码： 510663
联系电话：（8620）61302671
网址：http：／／www．gtcim．com

21 CNAS - Harmful Test

 Report, 100\% non-toxic

 Report, 100\% non-toxic}

Safe Efficient Sterilization Deodorization 5-Layer Plus Filtering
PM2.5 Defense

CNAS
中国认可
国际互认
检测
TESTING
CNAS L4136

检测报告（Test Report）

报告编号（Report No．）：WTH20H04023047C 日期（Date）：2020／5／6 页数（Page）： 1 of 6

Abstract

委托单位：深圳市康风环境科技发展有限公司 Applicant：Shenzhen Kangfeng Environment Science \＆Technology Development Co．，Ltd 单位地址：深圳市龙岗区坂田街道天安云谷产业园一期 3 栋 D 座 21 楼 2101 房 Address：Room 2101，Floor 21，Block D，Building 3，Tian An Yun Gu Industrial Park（Phase 1），Bantian Sub－dist， Shenzhen

样品信息（Sample Information）：	
样品名称（Sample Name）：	康风 AOP－KF®固体碱 Kangfeng AOP－KF®solid alkali
样品描述（Sample Description）：	白色物质（White substance）
样品编号（Sample No．）：	WTH20H04023047C01
委托日期（Sample Received Date）：	$2020 / 4 / 28$
检测日期（Testing Period）：	$2020 / 4 / 28-2020 / 5 / 6$

检测结果（Test Result）：
请参见后续页（Please refer to following page（s）．）。

检测要求（Test Requested）：	结论（Conclusion）
根据客户要求，参照欧盟 RoHS 指令 $2011 / 65 / E U$ 及其修订指令 EU 2015／863，检测样品中的铅，镉，汞，六价铬，多溴联苯，多溴二苯醚，DBP，BBP，DEHP，DIBP 的含量（As specified by client，to determine the $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Hg}, \mathrm{Cr}(\mathrm{VI}), \mathrm{PBBs}$ ，PBDEs，DBP，BBP，DEHP，DIBP content in the sample with reference to EU RoHS Directive 2011／65／EU and its amendment Directive EU 2015／863．）。	合格（PASS）

授权签字人
Signed for and on behalf of HCT

Michael Huang

22

MFDS - Ministry of Food and Drug Safety Certificate

Safe Efficient Sterilization Deodorization 5-Layer Plus Filtering
PM2.5 Defense

시험•검사성적서

ㅈ접혁움의 약품안전처 지정번호 : 의약품
제21호

시험 - 검사 항목 및 결과

시험 검사 항목	시험 겁사 기준	시험 검사 결과	판정	비고
성상	해당 품목의 기준 및 시 험 방법에 따름	$\begin{gathered} \text { 백색의 부직포 재질 마스 } \\ \text { 크로서 안면부와 백생의 } \\ \text { 머리끈 등으로 구성되어 } \\ \text { 있다. } \end{gathered}$	적합	
형상시험 (mm)	해당 품목의 기준 및 시 험 방법에 따름	본체가로(정은상태)107.57본체섯로(정응 상태)157.78본체-가로 (펼칫상태)139.36본체- 세로(펼친상태)141.32머 리끈-길이(좌)182.04머 리끈길이(우)187.86	적합	
산또는알칼리	적합 부적합	$\begin{array}{\|c\|} \mid \text { 페놀프탐레인:무색/메틸 } \\ \text { 오렌지:주황색 } \end{array}$	적합	
색소	적합 부적합	색이 나타나지 않음.	적합	
형광	적합 부적합	UV램프 아래에서 형광을 나타내지 않음.	적합	
포름알데하이드	적합 부적합	크롬산칼룸 비교액보다 검액의 색이 연하다.	적합	
고정용 머리끈 접합부의 인장강도 (N)	10 N 이상	20.0	적합	
안면부 훕기저항 - $\mathrm{KF94} 4(\mathrm{~Pa})$	70 Pa 이하	$\begin{gathered} 15.7 / 16.4 / 14.9 / 15.0 / 1 \\ 5.6 / 14.9 \end{gathered}$	적합	

종합판정：적합
시험검사원：김수용
시험검사책임자：박재원

비고 ：DCRF－2003－109
※ 위 판정은 의뢰된 시험－검사 항믁만을 대상으로 한 것입니다．
※ 지면이 부족한 경우 시험－검사 항목 및 결과란은 별지로 작성 가능합니다．
※ 검사결과를 광고하거나 용기 포장 등에 표시할 때에는 시험 •검사성적서 전체 내용을 모두 표시하여야 합니다．
「식품 의약푼분야시헌•검사 등에 관한 법률」제11조제2항 및 같은 법 시행규칙 제12조제4항제1호에
따라 위와 같이 시험•검사성적서률 발급합니다．
2020 년04월27일

단국대학교 천안캠퍼스 산학협력단

31116 충청남도 천안시 동남구 단대로 119 단국대학교 산학협력관 공동기기센터

23
 HCoV-229E Certificate

infoclocm неатн

检测受理编号：JKK20020180

广州中科检测技术服务有限公司
Guangzhou CAS Test Technical Services Co．，Ltd．
日期：2020／03／25
页码号：1／4

检测报告

客户：
地址：

深圳市康风环境科技发展有限公司
深圳市龙岗区坂田街道天安云谷产业园一期 3 栋 D 座 2101

以下测试样品由申请人提供及确认：

样品名称：
检验类别：
样品数量：
型号：
批号：
商标：
生产单位：
到样日期：
检测周期：
测试要求：
检测方法：
检测结果：
样品描述：
备注：

康风 AOP－KF 固休碱
送检
1 1 ／

10劀态

深圳市康风环境科技发展有限公司
2020／2／13
2020／2／15－2020／3／13
请参见下页
请参见下页
请参见下页
固体
1）相关项目不在资质认定范围内，仅供委托方内部使用。
2）报告显示的测试结果是在广州呼㖄所医药科技有限公司进行，报告证书编号为 HYS202002111．

编辑： \qquad

审核：

批准：

地址：广州市天河区兴科路 368 号
电话：020－85231290，020－85231823
传真：020－85231035

邮编： 510650

网址：http：／／www．cas－test．org
邮箱：atc＠gic．ac．en

检测受理编号：JKK20020180

广州中科检测技术服务有限公司
Guangzhou CAS Test Technical Services Co．，Ltd．
日期：2020／03／25
页码号： $2 / 4$

试验方法：

1．试验用品
1）毒株：冠状病毒 HCoV－229E
2）细胞：Huh7 细胞

2．测试条件

1）温 度： $23 \sim 25^{\circ} \mathrm{C}$
2）相对湿度： $50 \sim 60 \%$
3）试验时间：60，120 和 360 分钟

3．测试方法

称取一定重量的样品备用，滴加病毒悬液，分别作用 60 ， 120 利 360 分钟，回收载体片中的病毒，试验设对照组。试验重复 3 次。

试验结果：

在本测试设置的实验条件下，测试样品对冠状病毒 HCoV－229E 作用 $60, ~ 120$ 和 360 分钟，测试样品对病毒有一定杀灭作用（表 1）。

表 1．康风 AOP－KF 固体碱在规定设置下对冠状病毒的杀灭作用和杀灭负对数值

病毒	时间	组别	第一次试验 Log $\left(\mathrm{TCID}_{50} / \mathrm{ml}\right)$	第二次试验 Log （ $\mathrm{TCID}_{50} / \mathrm{ml}$ ）	第三次试验 Log （ $\mathrm{TCID}_{50} / \mathrm{ml}$ ）	$\begin{gathered} \text { 平均值 } \\ \mathrm{Log} \\ \left(\mathrm{TCID}_{50} / \mathrm{ml}\right) \end{gathered}$	平均病毒灭活负对数值
冠状病毒HCoV－229E	60 分钟	测试组	3.67	3.67	3.67	3.67	0.41
		对照组	4.00	4.00	4.33	4.11	
	120 分钟	测试组	3.33	3.00	3.33	3.22	0.45
		对照组	3.67	3.67	3.67	3.67	
	360 分钟	测试组	0.00	0.00	0.00	0.00	3.50
		对照组	3.50	3.50	3.50	3.50	

＊＊＊＊＊＊＊＊接下页

检测受理编号：JKK20020180

广州中科检测技术服务有限公司
Guangzhou CAS Test Technical Services Co．，Ltd．
日期：2020／03／25
页码号：3／4

样品图片

检测受理编号：JKK20020180

广州中科检测技术服务有限公司
Guangzhou CAS Test Technical Services Co．，Ltd．
日期：2020／03／25
页码号：4／4

声 明

1．本报告由广州中科检测技术服务有限公司（以下简称本公司）出具。
2．本报告无本公司检验检测专用章，骑綘章无效。
3．本报告无审核人，批准人签字无效。
4．本报告涂改增删无效。
5．未经本公司书面许可不得部分复制本报告（全部复制除外）。
6．本报告仅对测试样品负责，不适用于测试样品以外的相同批次，相同规格或相同品牌的产品，也不适用于证明与制作，加工或生产测试样品相关的方法，流程或工共的正确性，合理性。

7．对本报告若有异议，应于收到报告之日起十五天内向本公司提出，逾期将自动视为承认本报告。
8．委托方对其送检样品及信息的准确性，真实性和完整性负责，引起的纠纷由委托方承担。
9．本公司对报告的相关信息保密，未经委托方同意，本公司不得就报告内容向第三方讨论或披露。基于法律，法规，判决，裁定（包括按照传票，法院或政府处理程序）的要求而需披露的除外。

10．本报告得出的数据或结论是基于特定的时间，特定的方法以及特定的适用标准对测试样品特征，成份，性能或质量进行的描述，采用不同的方法和标准，在不同的环境条件下对样品进行测试有可能得出不同的结论。

11．本报告对社会不具有证明作用。
12．由于本公司的原因导致需要对报告内容进行更改的，本公司应当重新为委托方出具报告，并承担更改报告产生的费用，委托方向本公司交还原报告。由于委托方自身的原因导致需要对报告内容进行更改的，委托方应当向本公司提出修改申请。经本公司审核同意了以重新出具报告的，相关费用由委托方承担，委托方向本公司交还原报告。

24 JAB Certificate

深圳市康风环境科技发展有限公司 殿

試 験 報 告 書

「AOP－KF ボール」の抗ウイルス試験
 (シェーク法)

北生発 2019＿0119 号

一般財団法人匪鈤噮境科学セ入务
理事長 山 田 陽 城

試験内容を公表する際は，結果の表記等について専門的な立場から確認させていただいております。 なお，確認目的と申込様式は，ホームページに収載しております。

1．表題

「AOP－KF ボール」の抗ウイルス試験（シェーク法）

2．報告書番号

北生発 2019＿0119号

3．目的

「AOP－KF ボール」による大腸菌ファージに対する抗ウイルス性能を，抗菌製品技術協議会試験法である「シェーク法」を参考に評価した。

4．依頼者

名 称：深圳市康风环境科技发展有限公司
所在地：深圳市龙岗区坂田街道雪岗北路天安云谷产业园一期 3 栋 D 座 2101

5．試験機関

名 称：一般財団法人 北里環境科学センター
所在地：〒252－0329 神奈川県相模原市南区北里 1－15－1

6．試験期間

2019年7月22日～2019年7月25日

7．試験品

AOP－KF ボール（直径約 2 mm ）•••写真 a
※表面積が約 $320 \mathrm{~cm}^{2}$ となるよう，約 250 個のボール（ $=6.18 \mathrm{~g}$ ）を 1 組とした。 （ 6.18 g は， 25 個のボールを 10 組測定した平均値 0.618 g の 10 倍量である）

写真 a．AOP－KF ボール

8．試験条件

（1）自然減衰（コントロール）；試験ウイルス液のみを振とうした際の試験ウイルス数の経時変動
（2）対照ボール；試験品の代わりに対象ボール（ガラスビーズ）を入れ，振とうした際の試験ウイルス数の経時変動
（3）AOP－KF ボール；試験品を入れ，振とうした際の試験ウイルス数の経時変動

9．試験微生物

ウイルス：Escherichia coli phage φ X174 NBRC 103405 （大腸菌ファージ）
宿 主 菌：Escherichia coli NBRC 13898 （大腸菌）

10．試薬および機器•器材

1）主な試薬
－Nutrient Broth（Difco）

- 普通ブイヨン（栄研）
- 塩化ナトリウム（和光，特級）
－Agar（Difco）
- 普通寒天培地（日水）
- リン酸緩衝生理食塩液（エルメックス）

2）主な機器•器材
－インキュベータ（MIR－153，MIR－553，三洋）
－ネオシェーカー（NS－LR，アズワン）
－ガラスビーズ（BZ－2，アズワン，直径約 2 mm ）

11．方法

1）試験操作
試験品をアルミホイルで包み， $121^{\circ} \mathrm{C}, ~ 15$ 分間で高圧蒸気滅菌後，乾燥させた。試験 ウイルスを $1 / 50$ 濃度の普通ブイヨン培地に懸濁し，約 $2 \times 10^{4} \mathrm{PFU} / \mathrm{mL}$ の試験ウイルス液とし， 110 mL 容量滅菌コップ（ $\varphi 50 \times \mathrm{H} 60 \mathrm{~mm}$ ）に 10 mL の試験ウイルス液を入れ，蓋をした。コップを水平振とら数 $150 \pm 10 \mathrm{rpm}$ ，振幅 $30 \pm 5 \mathrm{~mm}$ の条件で， $35 \pm 1{ }^{\circ} \mathrm{C}, ~$ 24 ± 1 時間振とうした。1，6，24時間後，各コップ内の試験液を遠沈管に取り， $3,000 \mathrm{rpm}$ で 1 分間遠心し，上清の 8 mL を採り，試料原液とした。また，試験品なし，および対照ボールを入れ，同様の操作をし，それぞれ自然減衰，対照とした。

2）試験ウイルス液の調製
Nutrient Broth で， $36 \pm 2{ }^{\circ} \mathrm{C}$ にて一晩培養した宿主菌液に，試験ウイルスを接種し，半流動寒天（Nutrient Broth $+0.5 \%$ 塩化ナトリウム $+0.5 \% \mathrm{Agar}$ ）と混合して普通寒天培地に重層した。 $36 \pm 2^{\circ} \mathrm{C}$ で 18 時間培養後，宿主菌を遠心除去し，孔径 $0.22 \mu \mathrm{~m}$ の メンブランフィルタでろ過して約 $10^{10} \mathrm{PFU} / \mathrm{mL}$ の試験ウイルス液を得た。これを $1 / 50$濃度の Nutrient Broth で $1,000,000$ 倍に希釈し，試験に供した。

3）試験ウイルス数の測定
試料原液について，リン酸緩衝生理食塩液で 10 倍段階希釈列を作製した。その試料原液，または希釈液と宿主菌を半流動寒天に混合して普通寒天培地に重層し，36土 $2{ }^{\circ} \mathrm{C}$ で $21 \sim 22$ 時間培養した。培養後，発生したプラークを数え， 1 mL あたりの試験 ウイルス数を求めた。

4）減少率の算出
コントロールの試験ウイルス数および各試験液の試験ウイルス数から，減少率を算出した。算出方法については，表3の脚注に示した。

12．結果

表1および，図1に経過時間ごとの試験ウイルス数を示した。
表 2 に経過時間ごとの試験ウイルス数の対数値を示した。
表3に経過時間ごとの対数減少値と減少率を示した。
試験品において，6時間作用後の試験ウイルス数は定量下限値未満（ $<5 \mathrm{PFU} / \mathrm{mL}$ ） となり，減少率は $>99.9 \%$ であった。

表1．経過時間ごとの試験ウイルス数
（単位：PFU／20 mL）

試験条件	時間（h）			
	0	1	24	
（1）自然減衰 （コントロール）	18,000	17,000	15,000	5,100
（2）対照ボール	18,000	22,000	20,000	6,500
（3）AOP－KFボール	18,000	75	<5	<5

試験ウイルス：Escherichia coli phage φ X174 NBRC 103405（大腸菌ファージ）

図 1．経過時間ごとの試験ウイルス数

表 2．経過時間ごとの試験ウイルス数の対数値

試験条件	時間（h）			
	0	1	6	24
$\begin{aligned} & \text { (1)自然減衰 } \\ & \text { (コントロール) } \\ & \hline \end{aligned}$	4.26	4.23	4.18	3.71
（2）対照ボール	4.26	4.34	4.30	3.81
（3）AOP－KFボール	4.26	1.88	<0.70	<0.70

表 3．経過時間ごとの対数減少値と減少率

試験条件 1h作用後 6 h 作用後 24 h 作用後 A B （減少率） A B （減少率） A （1）自然減衰 （コントロール） 0.03 0.08 0.55 （減少率）						
	(0.08)	-	(0.04)	-	0.44	-
（3）AOP－KFボール	2.38	2.35 (99.5%)	>3.56	>3.48 $(>99.96 \%)$	>3.56	>3.01 $(>99.90 \%)$

－初期値を基準とした時の対数減少値 A

$$
=\log _{10}\left(0 \text { 時間のウイルス数) }-\log _{10}\right. \text { (所定時間作用後のウイルス数) }
$$

－A（1）自然減衰）を基準とした時の所定時間作用後の A（2）試験品）の対数減少値 B

$$
=\mathrm{A} \text { (2 (2)試験品) }-\mathrm{A} \text { ((1) 自然減衰) }
$$

－減少率 $(\%)=\left(1-\frac{1}{\left.10^{\text {（対数減少侸 }}\right)}\right) \times 100 \quad(\%)$

25

 ISO 13485

 ISO 13485}

CERTIFICATE OF REGISTRATION

The Medical Devices Quality Management Systems of

Unified Social Credit Code: 914419000651824904
No. 47 E District, Swan road Industrial Park, Li Wu village, Quo Tout Town, Dong Guan, China
has been assessed by GIC and complying with

YY/T0287-2017/ISO13485:2016

For the following activities

Production and sales of plastic blister boxes for medical devices

Date of Issue: 02 November 2017 Date of Expiry: 01 November 2020
Date of Initial Certification: 02 November 2017
Certificate No.: G17Q2GZ0145R0S

The granting of pis cernlicate does nor mean that the certificate holder can avoid any legal obligation. It the products or activiles covered in the scope of certitcation requite administrative ilcerise, the cerfitcate shall be only valid within the scope of administrative licensing. The registered organization shall be subject to regular annual alpervision by BIC, and tho continual validity of the corticate is base upon conformity of midi. Pioase scan wo-dimension code at lift to find the certificate information. This corticate can be queried at the Nasional Certification and Accreditation Commission otficisi website (www roca gov in) \& OIC website (wow. grog cam ch)

(hat Werchait pule cichlids

Signature:

[^4]
26

CAS - Antibacterial Test

"Year martaer in Heallicara Mobetion"

2012002257 K

Test Center of Antimicrobial Materials

Technical Institute of Physics and Chemistry, Chinese Academy of Sciences

Test
 Report

Report Number: LHKJ-1505-37-1/1

Sample Name * Antibacterial sheet

Sample Clients * Nano and Advanced Materials Institute Limited

Test

Date of Report
May 22,2015

> Address: 29\#, East Road, Zhongguancun, Haidian District, Beijing, PRC

Tel: +861082543775 , Fax: +861082543776

Post code: 100190
Web: www.ipc.ac.cn
E-mail: lhjc@mail.ipc.ac.cn

27

US FDA Registration

104030 HEALTH
"Yeur partnet in Heallicare Markeiling"
Safe Efficient Sterilization Deodorization 5-Layer Plus Filtering
PM2.5 Defense

美國 FDA 註冊 US FDA Registration

連結 Link：
https：／／www．accessdata．fda．gov／scripts／ cdrh／cfdocs／cfRL／rl．cfm？lid＝667355\＆ pcd＝QKR

							－A A
FDA U．S．FOOD \＆DRUG ADMINISTRATION							
				Vaccines，Blood 8 Biologics	¢ Animal Q veterinary	Cosmetics	Tobacco Products
Establishment Registration \＆Device Listing －FDA Home o Medical Devices o Datioases						睘：	
New Search Back To Search Resuls							
Page Last Updated：06／15／2020 Language Assistance Available：Español｜繁體中文｜Tiêng Việ｜｜한국어｜Tagalog｜Pyccкий｜ English							

28
 CE Certificate

EU DECLARATION OF CONFORMITY

1）PPE Product

Product Name： Model Number： Type：

MASK
AOP－KF MASK
Non－sterile protective mask

2）Name and address of the manufacturer and authorized representative：

Manufacturer

Name：
Address：

ZHONGSHAN XINKE MEDICAL DEVICE LIMITED （former name：Zhong Shan Civil Tech Electronic Limited） NO．6，INDUSTRIAL ZONE，NANLANG TOWN， ZHONGSHAN，GUANGDONG，CHINA

Authorized Representative

Name：
Nationality：
Personal ID Number：
Address：

TO Hak Mau
Swedish
551116－2090
Lönebostallsgatan，1B 31，00240，Helsingtors，Fintand

3）This declaration of conformity is issued under the sole

 responsibility of the manufacturer（or installer）：Manufacturer Name：ZHONGSHAN XINKE MEDICAL DEVICE LIMHIED．

4）Object of the declaration：

（identification of product allowing traceability，thany include acolour image of sufficient clarity to enable the identification of the product where appropriate．）

Y－LW0888

[^0]:

[^1]:

[^2]:

[^3]:

[^4]: Guardian Independent Certification (Beijing) Co S bid. 1-6D,6F, 1st Building. and Courtyard, Dapiaoting M belestreet.

 Chaoyang Distinct, Beijing City Post Code, 100124

